Torgholodmash.ru

ТоргХолодМаш
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный и аналоговый блок питания своими руками

Импульсный и аналоговый блок питания своими руками

Особенности блока питания

В большинстве устройств, применяются импульсные схемы блоков питания (ИБП) из-за их высоких электроэнергетических показателей и стабильности в работе. Но вместе с тем используются и аналоговые источники питания, обладающие простотой изготовления и высокой надёжностью. Существует огромное количество вариантов изготовления блоков питания своими руками, применяя различные схематические решения.

Как выбрать прибор

В отличие от первичных источников питания, предназначенных для перевода неэлектрической энергии в электроэнергию (например, солнечная батарея), лабораторный источник питания относится к вторичным, позволяющим преобразовать электроэнергию с целью обеспечения требуемых параметров (блок питания ПК, трансформатор, стабилизатор напряжения).

Лабораторный БП может быть линейным или импульсным. В основе приборов первого типа — трансформатор, работающий на низких частотах. Он понижает стандартное напряжение из электросети (220 В) до нескольких десятков вольт при сохранении частоты в 50 Гц. После этого диодный мост выпрямляет и сглаживает напряжение конденсаторами, выполняется окончательное снижение вольтажа стабилизатором до необходимого значения.

Линейный блок питания также называют регулируемым, поскольку он позволяет получать постоянный результат напряжения на выходе вне зависимости от изменений параметров при работе с переменным током. Это полезная функция для восстановления работоспособности аккумуляторов портативных устройств при нахождении в разряженном состоянии в течение длительного времени, а также для зарядки мобильных гаджетов.

Импульсный БП функционирует по принципу заряда импульсами тока сглаживающих конденсаторов. Главные достоинства такого типа приборов по сравнению с линейными — небольшой вес и КПД, превышающий 80 % за счет поступления в конденсаторы точного количества требуемой для работы БП энергии.

Важный параметр при выборе эффективного БП — диапазон напряжения и тока на выходе прибора. Устройства с автоограничением выходных параметров эффективнее приборов с постоянным диапазоном ввиду отсутствия ограничений по предельной мощности, вырабатываемой блоком питания.

Лабораторные БП могут содержать от 1 до 3 каналов. Большинство из них — одноканальные. Два или три канала применяются в специальных приборах, использующихся для компоновки схем с несколькими питающими напряжениями. Электроизоляция позволяет сделать независимыми ток и напряжение любого канала по отношению к электросети и прочим каналам. Это позволяет менять «плюс» на «минус» или соединять каналы последовательно.

В лабораторном источнике питания должны присутствовать защитные функции, позволяющие сохранить работоспособность прибора и предохраняющие пользователя от удара током. К ним относятся: защита от перегрузки по напряжению, току и мощности; предохранение от перегрева.

Наконец, большинство из БП среднего и премиального ценового диапазона поддерживают программный контроль наряду с ручным, а особо продвинутые модели управляются посредством компьютерных интерфейсов USB, LAN и IEEE-488.2. Это позволяет повысить комфорт при взаимодействии с прибором и единовременно отображать все параметры на мониторе ПК.

Записки программиста

Любой, кто пытался сделать линейный блок питания, знает, что задача это несколько сложнее, чем преподносится в книжках. Схема-то простая. Но как понять, каковы должны быть номиналы компонентов в ней? Какой ток сможет выдавать БП при использовании заданных компонентов? Сегодня мы сделаем линейный блок питания на 5 В и в процессе попробуем ответить на эти вопросы.

Важно! Электричество — опасная штука. Знайте, что неосторожное обращение с ним может привести к вашей смерти. Не допускается повторять проект, если вы не знакомы с техникой безопасности при работе с 220 В.

Построение модели

Было решено построить модель будущего БП в LTspice. Вот что получилось:

Модель линейного блока питания в LTspice

Модель можно скачать здесь . Схема и принцип ее работы описаны во многих источниках, поэтому не будем задерживаться на этом моменте.

Небольшой трансформатор китайского производства под названием «EI-35*15 230V 50Hz 6V 3VA» у меня уже был. Измеренные сопротивление и индуктивность вторичной обмотки составили 3 Ом и 18.84 мГн соответственно, первичной — 1.4 кОм и 17.77 Гн. Эти значения и были использованы в модели. Коэффициент 0.995 взят с потолка. Он отражает потери на трансформаторе и должен быть чуть меньше единицы.

Читать еще:  Что такое синхронизация в смартфоне леново

Емкость C1 была подобрана так, чтобы выходное напряжение при потреблении нагрузкой 200 мА держалось в пределах 5-6 В:

График выходного напряжения линейного блока питания

Минимальное и RMS значение напряжения:

Минимальное и RMS напряжение на выходе линейного блока питания

На диодах D1-D4 при включении БП видим ток до 1.3 А, и после заряда конденсатора C1 — до 0.65 А. Похоже, что можно использовать диоды 1N4001. Они способны выдерживать прямой ток до 1 А, а импульсный ток — аж до 30 А. Но БП планировалось нагружать выше расчетного лимита. Поэтому были использованы диоды 1N5408. Они рассчитаны на прямой ток 3 А и импульсный ток до 200 А.

Также из модели мы узнаем, что ток через R2 может достигать 1.2 А. Поскольку это сопротивление вторичной обмотки трансформатора, то в реальной схеме R2 не будет. Но на его месте будет стоять предохранитель. Значит, предохранитель должен быть где-то на 2 A.

Само собой разумеется, напряжением V(out) как на скриншоте мы ничего питать не можем. Я хотел использовать какой-нибудь линейный стабилизатор с низким падением напряжения (LDO). Но оказалось, что к подходящим для задачи LDO, доступным в локальных магазинах, не так-то просто найти модель для LTspice. Поэтому в модели пришлось обойтись без LDO.

Пайка и тестирование

Блок питания у меня получился таким:

Самодельный линейный блок питания

Стенд сделан из оргстекла, склеенного прозрачным эпоксидным клеем. В качестве LDO был использован L4941BV. Он выдает напряжение 5 В и ток до 1 А. Согласно даташиту [PDF], при токе 200 мА падение напряжения составляет лишь 0.15 В. Сам же стабилизатор при этом потребляет около 10 мА. Ожидалось, что в итоге БП сможет выдавать 150-180 мА.

Полная схема (кликабельно):

Схема линейного блока питания

Блок питания тестировался при помощи 5-ваттных резисторов. Их номиналы уменьшались, то есть, ток увеличивался, до тех пор, пока на осциллографе не появилась рябь (ripple) в 60 мВ:

Рябь (ripple) линейного блока питания на осциллографе

Произошло это на нагрузке 23 Ом. Соответственно, ток составил 217 мА, а мощность — 1.085 Вт.

Для измерения потребляемой мощности и коэффициента мощности был использован ваттметр МЕГЕОН 71017:

Ваттметр МЕГЕОН 71017

Согласно прибору, на такой нагрузке БП потребляет 2.75 Вт. Эффективность составила:

Мы можем посчитать активную мощность (active power) в LTspice, как среднее от произведения входного тока на входное напряжение. Эта величина уже учитывает коэффициент мощности вместе с любыми искажениями в кривой потребляемого тока. Выходная мощность нам известна, она составляет 5 В умножить на 200 мА, или 1 Вт. Но такие расчеты дают эффективность не более 32%.

Также при использовании директивы .four 50 I(V1) модель выводит коэффициент мощности в SPICE Error Log:

Однако прибор показывает PF равный 0.925. В общем, такая упрощенная модель не подходит для оценки эффективности и коэффициента мощности.

Заключение

Сегодня мы многое узнали о линейных блоках питания. А именно — как понять, какие диоды нужно использовать в диодном мосту, на какой ток должен быть предохранитель, какой емкости должен быть конденсатор, а также как измерить КПД блока питания.

«Наивная» модель может быть использована для подбора номиналов компонентов. Однако если вы хотите оценить эффективность или коэффициент мощности блока питания, то моделировать его нужно вместе с LDO. За более точную модель придется заплатить лишними ограничениями на выбор компонентов.

Был изготовлен линейный блок питания на 5 В и 200 мА. Его эффективность не высока. Однако ценят линейные блоки питания не за эффективность, а за простоту, надежность и отсутствие ВЧ-наводок.

Что такое линейные блоки питания

Линейные блоки питания-1

Линейные блоки питания могут быть фиксированными, например, как источник питания 5V, который может потребоваться для логической схемы, или несколько фиксированных блоков питания, необходимых для ПК (+5, +12 или -12V). На настольном лабораторном блоке питания вы можете использовать источник переменного тока. В дополнение к одиночным источникам вы также можете получить двойные схемы питания, например, для схем операционного усилителя ±15V, и даже БП двойного контроля, которые синхронизированы по напряжению друг с другом.

Читать еще:  Регулировка яркости индикатора в радиоконструктор старт 7176

Принципиальная схема

Некоторые примеры:

  • +5V логические и микропроцессорные схемы
  • +12V LED освещение, общая электроника
  • Схемы операционного усилителя ±15V
  • Стендовое испытательное питание 0-30V
  • +14,5V зарядное устройство

В этой статье мы рассмотрим отдельные компоненты блока питания, а затем с нуля разработаем небольшой блок питания 12V и регулируемый двойной блок питания 1–30V.

Компоненты линейного блока питания

  • Секция ввода сети содержит компоненты подключения к электросети, обычно выключатель, предохранитель и контрольную лампочку. Используйте хорошее заземление и изолируйте все силовые части внутренней проводки изоляционным материалом для защиты от случайного контакта.
  • Трансформатор выбирают в соответствии с требуемым выходным напряжением и эффективно изолирует все другие цепи от сетевых контактов. Трансформатор может иметь несколько отводов первичной обмотки, чтобы обеспечить различное входное напряжение сети, и несколько отводов вторичной обмотки, соответствующих требуемому выходному напряжению. Кроме того, между отводами первичной и вторичной обмоток имеется экран из медной фольги, который способствует уменьшению емкостной связи с высокочастотным сетевым шумом.
  • Выпрямитель может быть таким же простым, как одинарный диод (не подходит), двухполупериодный мост с центральным ответвлением или двухполупериодный мост. Следует использовать выпрямительные диоды более мощные, чем рассчитывалось. По моему опыту ремонта многих неисправных блоков питания, проблемы обычно возникают из-за выхода из строя диода, которые горят либо из-за слишком большого тока, либо из-за скачков напряжения в сети.
  • Учитывая это, выберите диод с высоким PIV (пиковое обратное напряжение). При установке диодов держите выводы на длинной стороне, так как именно здесь рассеивается большая часть их тепла. В высоковольтных источниках питания часто встречаются небольшие конденсаторы, подключенные параллельно диодам, чтобы помочь им быстрее восстанавливаться.
  • Конденсатор является постоянно работающим компонентом и должен заряжаться до пика вторичного напряжения (Vsec*1,414), а затем быстро отдавать накопленную энергию в нагрузку. Конденсаторы из алюминиевой фольги представляют собой рулон бумаги из алюминия, заполненный маслом. Однако, они имеют свойство со временем высыхать и, как следствие, терять свою емкость. Если возможно, разместите их подальше от источников тепла при компоновке.
  • Танталовые конденсаторы имеют гораздо более низкое последовательное сопротивление (эквивалентное последовательное сопротивление), поэтому лучше справляются с пульсациями. Вы можете использовать их в цепи регулятора. При разводке схемы, старайтесь свести все заземления в одну точку. Регулятор также должен иметь небольшой выходной ток, когда он не находится под нагрузкой; 1кОм будет достаточно.
  • На рисунке ниже зеленая кривая представляет собой то, как форма волны выглядела бы без конденсатора, а красная форма волны — это «заряд» конденсатора на каждом полупериоде, а затем разряд из-за тока нагрузки. Результирующая форма волны — это пульсирующее напряжение.

линейные блоки питания-4

Линейные блоки питания — проектирование

Разработка линейного блока питания похожа на чтение на иврите: вы начинаете с конца и продвигаетесь к началу. Ключевая спецификация — это напряжение на выходе, которое мы хотим иметь, и какую величину тока мы можем получить от него без падения напряжения. В этом проекте давайте нацелимся на 12V при токе 1 А и 3V на регуляторе. У любого регулятора должна быть определенная необходимая разница между входным и выходным напряжениями для правильной работы. Если не указано иное, предположите, что это минимум 3V. Некоторые из используемых здесь регуляторов рассчитаны только на 2V.

линейные блоки питания-5

Если на выходе нам нужно 12V, то на конденсаторе нужно 12 + 3 = 15V. Теперь, когда этот конденсатор заряжается и разряжается, в нем должна присутствовать переменная составляющая, то есть пульсация напряжения. Чем больше ток, потребляемый конденсатором, тем хуже пульсации, и это тоже нужно учитывать. При выборе значения 10%, т.е. 1,2V (размах), ограничение рассчитывается следующим образом:

формула.1

где f равно 50 или 60 в зависимости от частоты вашей сети. Следовательно, нам необходимы:

фрмула.2

Это возвращает нас к диодам. Поскольку диоды подают не только ток нагрузки, но и ток заряда конденсатора, они будут использовать больший ток.

В двухполупериодном мосту ток составляет 1,8*I нагрузки. На центральном отводе, это 1,2*I нагрузки. Учитывая это, мы должны использовать диоды не менее 2 А.

Теперь мы переходим обратно к вторичной обмотке трансформатора и ее удельному напряжению. В любой надежной системе мы должны учитывать допуски. Если мы будем следовать только минимальным требованиям к конструкции, вход регулятора может упасть ниже уровня падения напряжения, что окажет значительное влияние на сеть. В коммерческих проектах обычно указывается ± 10%, поэтому, если у нас напряжение 230 В, это означает, что оно может упасть до 207V.

Таким образом, необходимое напряжение на вторичной обмотке будет следующим:

где 0,92 — КПД трансформатора, а 0,707 — 1/√2.

Vreg — падение напряжения регулятора, Vrect — падение напряжения на 2 диодах, которое составляет 2*0,7 для цепи центрального отвода и 4*0,7 для полного моста. Пульсации напряжения V было указано как 10% от 12V или 1,2V, поэтому:

БП-6

Это означает, что готового трансформатора на 15V должно хватить. Бывает, что вы не можете найти подходящий трансформатор, но есть в наличии другой, с более высоким напряжением. Обратной стороной этого является то, что на стабилизаторе будет более высокое напряжение и, как следствие, большая мощность, рассеиваемая его радиатором.

Последнее, что нужно сейчас указать, — это габаритная мощность трансформатора в ВА. Это простая и распространенная ошибка — думать, что ВА будет Vsec*Iload, т.е. 15*1 = 15VA. Но мы не должны забывать, что трансформатор также заряжает конденсатор, поэтому в зависимости от конфигурации, нагрузка 1,2 или 1,8*I означает большую разницу, то есть 1,8*1*15 = 27 ВА.

На этом конструирование завершается. А как насчет предохранителя? Это целая наука, но для этого простого блока питания я бы оценил его в 2 раза больше первичного входного тока. Таким образом, в данном случае ВА равно 27, а напряжение сети составляет 230V, а I=2*27/230 = 250 мА.

Теперь мы можем добавить в регулятор последние несколько компонентов:

линейные блоки питания-7

Для C1 мы рассчитали его на 4200 мкФ. Но поскольку регулятор удалит большую часть пульсации, она может быть меньше или вдвое меньше той, что составляет 2200 мкФ. Назначение C2 и C3 — обеспечение стабильности и помехоустойчивости регулятора. Конденсаторы C2 10 мкФ и C1 1 мкФ. В идеале эти емкости должны быть танталового типа, но если вы вынуждены использовать алюминий, вам следует удвоить значение.

Шунтирующим диодом D3 часто пренебрегают, но он важен. Если произойдет короткое замыкание на входе регулятора, любая накопленная емкость в нагрузке Vcc, включая C3, разрядится на заднюю часть регулятора и, возможно, спалит его. Но D3 спасает от такой ситуации.

Теперь давайте заменим фиксированный регулятор на регулируемый на основе популярного и простого в использовании LM317 и добавим дополнительную отрицательную версию LM337, чтобы сформировать двойной регулируемый блок питания. Обратите внимание, что мы использовали трансформатор с центральным отводом, а также полный мостовой выпрямитель. Следующие примечания в равной степени относятся к отрицательной половине блока питания. Единственное, что осталось рассчитать — это R6 и R7.

Если вы сделаете R6 = 220, тогда для любого напряжения между Vmax и Vmin, R7 = (176*Vout) — 220. Итак, если вы хотите 9V, R7 будет 176*9 — 220 = 1k4. Вы также можете использовать двойной подстроечный резистор от 5 до 10kОм (линейный) для одновременной регулировки обеих сторон. Трансформатор с вторичной обмоткой 25/0/25 подойдет. C8 и C9 обеспечивают помехоустойчивость и могут составлять 10 мкФ. C10 и C11 — 1 мкФ, а C4 и C7 — 1000 мкФ. Минимальное выходное напряжение составляет около 1,25V.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector