Torgholodmash.ru

ТоргХолодМаш
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Источник питания для промышленной автоматики СКАТ КИП-12/7 DIN

Источник питания для промышленной автоматики

pdfПаспорт на прибор
pdfСертификация ТР ТС

Особенности СКАТ КИП-12/7 DIN

  • преобразование переменного/постоянного напряжения широкого диапазона в постоянное стабилизированное напряжение 12 В;
  • запуск нагрузки с высокими пусковыми токами;
  • защита от перенапряжения и импульсных помех на входе;
  • защита от перегрузки, короткого замыкания и перегрева;
  • регулировка выходного напряжения в диапазоне ±10% от номинального с сохранением мощности.

Технические характеристики СКАТ КИП-12/7 DIN

1Входное напряжение, ВПеременного тока90…250
Постоянного тока110…350
2Частота входного напряжения переменного тока, Гц47…63
3Выходное напряжение постоянного тока при номинальной нагрузке, В10,8…13,2 *
4Ток нагрузки, A0…7,0
5Величина напряжения пульсаций с удвоенной частотой сети (от пика до пика) при номинальном токе нагрузки, мВ, не более50
6Мощность, потребляемая изделием от сети без нагрузки, ВА, не более4
7Сечение провода, зажимаемого в клеммах колодок, мм2, не более1,5
8Габаритные размеры ШхГхВ, мм, не болеебез упаковки139х89х66
в упаковке152х105х70
9Масса, НЕТТО (БРУТТО), кг, не более0,40 (0,45)
10Диапазон рабочих температур, °С-10…+40
11Относительная влажность воздуха при 25 °С, %, не более80
12Степень защиты оболочкой по ГОСТ 14254-2015IP20

* регулируется подстроечным резистором.

12 В, 7 А. Напряжение питающей сети — 90. 264 В переменного тока, 110. 370 В постоянного тока. Амплитуда пульсаций — не более 50 мВ. Малогабаритный корпус — 139х89х66 мм, монтаж на DIN-рейку 35 мм, защита выхода от КЗ и перегрузки.

pdfПаспорт на прибор
pdfСертификация ТР ТС

Заявка на оптовое приобретение продукции
Стать дистрибьютором

Источник питания СКАТ КИП-12/7 DIN предназначен для питания радиоэлектронных устройств номинальным напряжением 12 В.
Область применения: обеспечение питания контрольно-измерительных приборов и оборудования промышленной автоматики.

Измерение напряжения постоянного тока с помощью цифрового мультиметра

1. Переведите регулятор в положение alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />. На некоторых цифровых мультиметрах (DMM) также предусмотрен вариант alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />. Если вы не знаете, что выбрать, начните с режима alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />, который соответствует более высокому напряжению.

2. Сначала вставьте черный щуп в разъем «COM».

Последовательность измерений напряжения постоянного тока цифровым мультиметром

Последовательность измерений напряжения постоянного тока цифровым мультиметром

3. Затем вставьте красный щуп в разъем «V Ω». По завершении измерения отсоедините щупы в обратном порядке: сначала красный, затем черный.

4. Подключите измерительные щупы к цепи: черный к контрольной точке отрицательной полярности (заземление цепи), красный — к положительной контрольной точке.

Примечание. Большинство современных цифровых мультиметров автоматически определяют полярность. При измерении напряжения постоянного тока не имеет большого значения, с каким контактом соприкасаются красный и черный выходы — с положительным или отрицательным. Если щупы соприкасаются с клеммами противоположных знаков, на экране появляется символ «минус». При использовании аналогового мультиметра красные выводы всегда должны соприкасаться с положительной клеммой, а черные — с отрицательной. Несоблюдение этого требования приведет к повреждению прибора.

5. Прочитайте результат измерения на экране.

Другие полезные функции при измерении напряжения постоянного тока

6. Современные цифровые мультиметры по умолчанию работают в режиме автоматического выбора диапазона — в зависимости от выбранной на регуляторе. Чтобы выбрать фиксированный диапазон измерений, нажмите кнопку RANGE (Диапазон) несколько раз для выбора нужного диапазона. Если измеренное напряжение находится в диапазоне более низких значений alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />, выполните следующие действия:

  1. Отсоедините измерительные щупы.
  2. Измените положение регулятора на [символ мВ пост. тока].
  3. Подсоедините измерительные щупы и прочитайте показания.

7. Нажмите кнопку HOLD (Удержание), чтобы выполнить устойчивое измерение. Его результаты можно просмотреть после завершения измерения.

8. Нажмите кнопку MIN/MAX (Мин./Макс.), чтобы выполнить измерение максимальных и минимальных значений. Цифровой мультиметр издает звуковой сигнал при регистрации каждого нового показания.

9. Нажмите кнопку относительного измерения (REL) или кнопку с дельтой (Ω), чтобы задать определенное контрольное значение цифрового мультиметра. Отображаются результаты измерений выше и ниже контрольного значения.

Читать еще:  Фонарь светодиодный плавная регулировка яркости

Примечание. Избегайте распространенной среди техников ошибки: ни в коем случае не вставляйте щупы в неправильные входные разъемы. Перед измерением напряжения постоянного тока убедитесь, что красный щуп вставлен во входной разъем с маркировкой V, а не A. На экране должен отображаться символ dcV. Если измерительные щупы вставлены в разъемы с маркировкой A или mA, при измерении напряжения в измерительной цепи возникнет короткое замыкание.

Анализ результатов измерения напряжения

  • Как правило, напряжение измеряют в следующих целях: a) определить наличие напряжения в данной точке и б) убедиться, что напряжение находится на нужном уровне.
  • Напряжение переменного тока может сильно варьироваться (от −10 % до +5 % от номинального значения источника питания), не вызывая никаких сбоев в цепи. Но даже незначительные перепады напряжения постоянного тока могут указывать на неисправность.
  • Точное значение допустимого изменения напряжения постоянного тока зависит от области применения. Пример см. в таблице ниже.
  • В некоторых областях применения постоянного тока значительные колебания постоянного тока не только приемлемы, но и необходимы.
    • Пример. Частоту двигателей постоянного тока можно регулировать путем изменения подаваемого напряжения постоянного тока. В этом случае измерение напряжения постоянного тока электродвигателя зависит от настройки регулятора напряжения.

    Порядок измерения напряжения постоянного тока цифровым мультиметром

    Как показано в таблице выше, у полностью заряженного автомобильного аккумулятора номиналом 12 В напряжение разомкнутой цепи может находиться в диапазоне от 11,9 В до 12,6 В (обычно 2,2 В на ячейку).

    • Значение 11,9 В указывает на разряженный аккумулятор.
    • Значение 12,6 В указывает на 100-процентный заряд аккумулятора. Промежуточные измеренные значения показывают, что заряд менее 100 %.
    • Если измеренное напряжение батареи немного повышено (3–5 %), это намного лучше, чем пониженное значение напряжения. Падение напряжения постоянного тока ниже стандартного номинального значения указывает на наличие неисправности.

    Измерения напряжения переменного и постоянного тока

    • В некоторых случаях напряжение постоянного тока измеряют в цепях с напряжением переменного тока.
    • Для обеспечения максимальной точности измерения напряжения постоянного тока сначала измерьте и запишите напряжение переменного тока. Затем измерьте напряжение постоянного тока, с помощью кнопки RANGE (Диапазон) выбрав такой диапазон напряжения постоянного тока, который равен диапазону напряжения переменного тока или превышает его.
    • Некоторые цифровые мультиметры могут одновременно измерять и отображать значения переменного и постоянного тока сигнала. На экране цифрового мультиметра результаты отображаются тремя способами (см. рисунок ниже):
      1. Составляющая переменного тока сигнала отображается на основном поле экрана, а постоянного тока — на дополнительном поле меньшего размера.
      2. Показания по постоянному току можно перенести на основное поле, при этом показания по переменному току будут отображаться на дополнительном поле (как на большинстве цифровых мультиметров).
      3. Комбинированное значение переменного и постоянного тока — эквивалентное среднеквадратичное значение сигнала.
        Порядок измерения напряжения постоянного тока цифровым мультиметром

    Снижение пульсаций выходного напряжения

    Для сглаживания выходного напряжения VOUT и снижения пульсаций, обусловленных переключением транзисторов T1 и T2, используется дополнительная схема фильтра (Рисунок 2). При разработке этого фильтра следует учитывать максимальную и минимальную частоту переключения и диапазон рабочих напряжений AD5116.

    Рисунок 2.Схема фильтра для сглаживания выходного напряжения.

    Частота переключения схемы, показанной на Рисунке 2, находится в диапазоне примерно от 1.8 Гц до 500 Гц. Поскольку эти частоты довольно низки, для получения необходимой частоты среза фильтра обычно требуются относительно большие значения R, L и C. Однако последовательный резистор фильтра и выходная нагрузка образуют делитель напряжения, который снижает выходное напряжение. По этой причине сопротивление резистора R следует выбирать относительно низким.

    В схеме реализован простой RLC фильтр нижних частот. R и C имеют величины 50 Ом и 330 мкФ, соответственно, а индуктивность L составляет 100 нГн. Альтернативный вариант схемы может быть сконструирован с использованием широтно-импульсного модулятора (ШИМ), управляющего транзисторами, и усилителя ошибки.

    Источники питания AC/AC

    Источники питания AC/AC могут быть как нестабилизирующими, так и стабилизирующими. Первые обычно либо изменяют уровень напряжения (пример-автотрансформатор 220/110 В), либо осуществляют гальваническую развязку от питающей сети для повышения безопасности (пример-развязывающий трансформатор 220/220 В), либо выполняют обе функции сразу (пример-понижающий и развязывающий трансформатор 220/36 В или 220/12 В). Частота выходного напряжения может как совпадать с частотой питающего напряжения(аналогично предыдущим примерах), так и отличаться от неё, например, при частоте сети 50 Гц частота выходного напряжения может быть 400 Гц или наоборот. Может также отличаться и число фаз на входе и выходе. Особый класс источников питания AC/AC составляют источники бесперебойного питания, которые содержат промежуточное звено постоянного тока с резервной аккумуляторной батареей, обеспечивающей питание нагрузки в течение определенного времени при пропадании напряжения сети. Стабилизирующие источники питания AC/AC ( стабилизаторы напряжения) обеспечивают стабильное (в определенных пределах) напряжение на выходе при изменении напряжения питающей сети и тока нагрузки. Существует несколько типов таких стабилизаторов, различающихся принципом действия. Наиболее распространенные-электромеханические и релейные с переключением обмоток автотрансформатора или трансформатора с помощью электромагнитных реле или полупроводниковых (твердотельных) реле, или симисторов (симметричных тиристоров или триаков). Стабилизаторы напряжения переменного тока могут быть как с гальванической развязкой, так и без гальванической развязки. Чаще используются без гальванической развязки.

    Источники питания AC/DC

    Это самый широкий и наиболее востребованный класс источников. Источники питания AC/DC также могут быть как нестабилизирующими, так и стабилизирующими, с гальванической развязкой и без неё. Наиболее часто используются и сточники питания AC/DC с гальванической развязкой от питающей сети, так как они обеспечивают наибольшую электробезопасность потребителей электроэнергии.

    Н естабилизирующи е источники питания AC/DC обычно содержат трансформатор, работающий на частоте сети, выпрямитель и сглаживающий фильтр. Трансформатор изменяет величину напряжения в соответствии с коэффициентом трансформации (если нужно) и осуществляет гальваническую развязку. Выпрямитель выпрямляет (преобразует из переменного в постоянное) напряжение вторичной обмотки трансформатора. Сглаживающий фильтр фильтрует выпрямленное напряжение, снижая величину пульсации. Сравнительно редко встречаются н естабилизирующи е источники питания AC/DC с преобразователями напряжения, в которых выпрямитель выпрямляет сетевое напряжение, которое затем преобразуется в напряжение повышенной частоты 20-200 кГц, которое подается на трансформатор, а затем снова выпрямляется. Преимущество здесь – трансформатор, работающий на повышенной частоте, благодаря чему снижаются его габариты, вес и стоимость, а также габариты и вес источника питания в целом. Недостаток – более сложная схема с большим количеством элементов, что снижает надёжность и повышает стоимость.

    Стабилизирующие источники питания AC/DC могут быть выполнены как с линейными стабилизаторами напряжения (с непрерывным регулированием, или аналоговыми), так и с импульсными. Первые из них обладают очень хорошими характеристиками, самым низким уровнем пульсаций, шумов и помех. Недостатком их является низкий КПД, который обычно не превышает 50% и наличие громоздкого сетевого трансформатора. Применение импульсного стабилизатора вместо линейного (во вторичной цепи после выпрямителя) решает проблему низкого КПД (повышая его до 80-90%), но остается громоздкий сетевой трансформатор и появляется другой недостаток – резко повышается уровень шумов и помех. Но во многих применениях это не критично. И в этих случаях очень широко применяются импульсные источники питания с бестрансформаторным входом. Подавляющее большинство серийно выпускаемых источников питания – именно такие источники. Эти источники питания не содержат низкочастотного трансформатора, работающего на частоте сети (50 или 60 Гц). Напряжение питающей сети сразу выпрямляется выпрямителем и фильтруется сглаживающим фильтром, а затем подается на преобразователь напряжения (инвертор), который снова преобразует его в переменное, но повышенной частоты (50-300 кГц) и прямоугольной формы. Это позволяет з0начительно уменьшить габариты и вес трансформатора и снизить его стоимость за счет уменьшения стоимости сердечника, меди и снижения трудоёмкости изготовления. Одновременно преобразователь напряжения осуществляет функцию стабилизации напряжения или тока за счет изменения длительности (широтно-импульсная модуляция, ШИМ) или частоты (частотно-импульсная модуляция, ЧИМ) импульсов, или одновременно того и другого (ЧИМ-ШИМ). Недостатком таких источников питания, кроме выше перечисленных, является низкий коэффициент мощности (примерно 0,6). Для его устранения во многих импульсных источниках питания устанавливается корректор коэффициента мощности, который позволяет его повысить до 0,95-0,99. В импульсных источниках питания обратная связь в большинстве случаев осуществляется с выхода и подается на преобразователь напряжения через оптическое или трансформаторное устройство гальванической развязки, что позволяет получить высокую стабильность выходного напряжения или тока. При низких значениях выходного напряжения и больших токах нагрузки в некоторых источниках питания дополнительно используется обратная связь непосредственно с питаемой нагрузки.

    Источники питания DC/DC

    Источники питания DC/DC могут быть как нестабилизирующими, так и стабилизирующими, с гальванической развязкой и без гальванической развязки. Источники питания DC/DC применяются в тех случаях, когда первичным источником питания является источник постоянного тока, а питать оборудование непосредственно от него невозможно – требуется другое напряжение, или другая полярность, или другая стабильность, или гальваническая развязка. Во всех этих DC/DC источниках питания в основном используются импульсные преобразователи напряжения различных конфигураций. В тех случаях, когда гальваническая развязка не нужна и не очень большая разница напряжений между входом и выходом, применяются линейные стабилизаторы напряжения, в основном интегральные.

    Источники питания DC/AC

    Источники питания DC/AC (инверторы) применяются в тех случаях, когда имеется первичный источник питания постоянного тока, а для питания нагрузки необходимо напряжение переменного тока. Такая ситуация может встречаться, например, при необходимости питания нагрузки переменного тока от бортсети подвижных объектов (автомобилей, кораблей, самолётов и т.д.), от станционного источника питания постоянного тока аппаратуры телекоммуникаций, в автономных системах электропитания от солнечных батарей, ветрогенераторов и т.п., в источниках бесперебойного питания (ИБП) с промежуточным звеном постоянного тока в виде резервной аккумуляторной батареи.

    Инверторы (в том числе и входящие в состав ИБП) выпускаются двух видов в зависимости от формы выходного напряжения:

    С модифицированной синусоидой – выходное напряжение представляет собой двухполярные прямоугольные импульсы с паузой между ними, максимально приближенные по гармоническому составу к синусоиде, следующие с заданной частотой (наиболее часто 50 или 60 Гц).

    С чистой синусоидой – выходное напряжение синусоидально с незначительными искажениями.

    Достоинством первых является более простая схема и низкая стоимость, недостатком – несинусоидальная форма кривой выходного напряжения, из-за чего не все потребители могут работать с таким инвертором.

    Достоинством вторых является чистая синусоидальная форма кривой выходного напряжения, благодаря чему с этими инверторами могут работать любые потребители электрической энергии. Недостатком – более высокая цена, габариты и вес.

    Совместимость с ПО и ОС

    И последний вопрос касается совместимости с программным обеспечением и операционными системами. Далеко не все программы будут нормально работать на процессорах с новой архитектурой. У процессоров Alder Lake имеется проблема с совместимостью с защитой DRM, которая используется, например, компанией Denuvo для защиты компьютерных игр.

    Старые версии игр с такой защитой попросту не работают на новых процессорах, но Intel совместно с разработчиками ПО ведет работу в этом направлении. Старые версии операционных систем также ничего не знают о гетерогенных ядрах, поэтому сразу настраивайтесь на установку Windows 11. Но помните, если вы используете специфический софт, у которого не заявлена совместимость с новой операционной системой, лучше уточните этот вопрос у разработчика и повремените с апгрейдом.

    Что же можно сказать в итоге по новой платформе Intel? С одной стороны это инновации и использование новых технологий, стандартов и интерфейсов, с другой стороны возросшая стоимость миграции на новую платформу. Энергоэффективность возможна лишь в случае работы процессора в жестко заданных рамках TDP, но стоит снять все ограничения в BIOS и предаться разгону — готовьтесь к высоким температурам у увеличившемуся расходу электроэнергии.

    С стороны программного обеспечения также есть ряд вопросов, ведь, согласитесь, не хочется чувствовать себя бета-тестером и думать о возможной несовместимости. Но, такова расплата за прогресс и те преимущества, о которых нам дополнительно расскажут после анонса, после которого каждый самостоятельно примет для себя окончательное решение о необходимости смены платформы.

    0 0 голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты